PapeRman #2


Authors: Benjamin Bloem-Reddy and Yee Whye Teh
Institute: University of Oxford

In an effort to improve the performance of deep neural networks in data-scarce, non-i.i.d., or unsupervised settings, much recent research has been devoted to encoding invariance under symmetry transformations into neural network architectures. We treat the neural network input and output as random variables, and consider group invariance from the perspective of probabilistic symmetry. Drawing on tools from probability and statistics, we establish a link between functional and probabilistic symmetry, and obtain generative functional representations of joint and conditional probability distributions that are invariant or equivariant under the action of a compact group.

Those representations completely characterize the structure of neural networks that can be used to model such distributions and yield a general program for constructing invariant stochastic or deterministic neural networks. We develop the details of the general program for exchangeable sequences and arrays, recovering a number of recent examples as special cases.


Authors: Hyunjik Kim, Andriy Mnih, Jonathan Schwarz, Marta Garnelo, Ali Eslami, Dan Rosenbaum, Oriol Vinyals, Yee Whye Teh
Institutes: DeepMind, University of Oxford

Neural Processes (NPs) (Garnelo et al., 2018a;b) approach regression by learning to map a context set of observed input-output pairs to a distribution over regression functions. Each function models the distribution of the output given an input, conditioned on the context. NPs have the benefit of fitting observed data efficiently with linear complexity in the number of context input-output pairs, and can learn a wide family of conditional distributions; they learn predictive distributions conditioned on context sets of arbitrary size.

Nonetheless, we show that NPs suffer a fundamental drawback of underfitting, giving inaccurate predictions at the inputs of the observed data they condition on. We address this issue by incorporating attention into NPs, allowing each input location to attend to the relevant context points for the prediction. We show that this greatly improves the accuracy of predictions, results in noticeably faster training, and expands the range of functions that can be modelled.

This image has an empty alt attribute; its file name is screenshot-from-2019-01-17-01-49-57.png

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s